
Brief Summary of NOWS Theoretical Backgrounds 
 

 

 Power spectral density matrix of longitudinal wind velocity fluctuation 

 

 Power spectral density function of longitudinal wind velocity fluctuations – two-sided form 

- Kaimal et al. (1972); Simiu (1974); Simiu and Scanlan (1996),  
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where, z = height,  = circular frequency (rad/s); u* = friction velocity; U(z) = mean wind speed 

at height z 

 

 Coherence function (two-dimensional) 

- Davenport (1967); Simiu and Scanlan (1996) 
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where, x, z = horizontal and vertical directions, respectively; z = sr zz  ; x = r sx x ; Cz, 

Cx = a constant, generally taken 10 and 16 for structural design viewpoint, respectively. 

 

 Cross-spectral density function 

- Co-spectrum (quadratic term of wind is ignored) 
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 Power spectral density matrix S() : two-dimensional, n-variate 
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 Simulation schemes of wind velocity fluctuations 

 

1. Discrete frequency function with FFT 

– Wittig and Sinha (1975) 

 

Discrete time series can be simulated using the following model: 
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where, 

Hpi(kf) : a lower triangular matrix by Cholesky decomposition of one-sided power spectral 

density function S(f); ik ik ikj     = complex Gaussian random number with zero mean and 

0.5 variance; 
cf

1
; fc = Nyquistt

2
  frequency 



2. Schur decomposition approach with AR (autoregressive) 

– Di Paola (1998); Di Paola and Gullo (2001) 

 

The n-variate stochastic vector process V(t) can be decomposed into a summation of n-variate 

fully coherent normal vectors Yj(t) independent of each other: 
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Let () be the eigenmatrix of S() whose columns are the eigenvectors (real and orthogonal), 

then, following relationship holds: 
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Vectors Yj(t) can be described as: 
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Let define the frequency domain [0, c], where 0 and c are lower and upper cut-off 

frequencies, and subdivided the domain into M parts cm   ,,, 100   
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where, l()=[1  2 3]. 
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Accordingly, vectors Yj(t) 
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Using the standard generation via AR(autoregressive) model: 

where r = 1,…,4; aj,u
(s) = parameters of the AR model; j,r

(s) = variances of the input; Wj
(s) = 

tion method.  

 is worth noting that in this study, M = 1 and p = 4 are used to generate wind velocity 
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normal random variables with zero mean and unit variance; p = AR model order 

AR parameters can be evaluated by using Yule-walker scheme, that is, autocorrela

 

It

fluctuations.



3. Ergodic spectral representation method 

– Deodatis (1996); Ding et al. (2006) 

 

Power spectral density matrix S() can be decomposed into the following product: 

where, H() is a lower triangular matrix by Cholesky decomposition of S() 

 

Stochastic process Vj(t) can be described by using following trigonometric series: 
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To take advantage of the FFT technique, above equation can be rewritten as follows: 
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where, N = number of n-variate simulation; j = 1, 2,…, N; p = 0, 1, … , n  (M - 1); M = 2N; 

where, 
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ml independent random phase angles distributed uniformly over the interval [0, 2] 

 

Note : can be obtained from inverse FFT of )( tpg jm   jmlB  



4. Conventional spectral representation method 

where, H() is a lower triangular matrix by Cholesky decomposition of S(). 

tochastic process V(t) can be described by using following trigonometric series: 

– Shinozuka and Deodatis (1991) 

 

Power spectral density matrix S() can be decomposed into the following product: 

)()()( *  THHS   

 

S

 
1

( ) 2 cos
N

V t A t
0

n n n
n

 


     


To take advantage of the FFT technique, above equation can be rewritten as follows: 

where, 
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 2 (nA H )   , N = number of n-variate simulation; p = 0, 1, … , M - 1;  

M = 2N;  2 ( ) expn nB H i     ;  =  /N;   = upper cut-off frequency [rad/sec]; 

n = independent random phase angles distributed uniformly over the interval [0, 2] 
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